
International Journal of TheoreticalPhysics, Vol. 8, No. 2 (1973), pp. 141-146 

The Exclusive Interaction 

W I L L I A M  A. BARKER 

Physics Department, University of Santa Clara, Santa Clara, California 

Received: 10 July 1972 

Abstract 

It is proposed that there exists a fifth basic interaction from which the Pauli exclusion 
principle can be deduced. Such an interaction would affect only particles of half integral 
spin, whose total number is less than the number of particles which participate directly in 
the strong interaction. This is the reason for choosing the name exclusive interaction, 
which, like the strong interaction, would be expected to obey a relatively large number of 
conservation laws and symmetry principles. The tentative mathematical expression for 
this interaction 

is suggested by a discussion of fermion-fermion scattering in the Born approximatiom 
It is found that a potential energy of this form may be used instead of antisymmetrizing 
the wave function in the manner required by the Pauli principle. An investigation of the 
binding of helium-like atoms is expected to lead to a determination of the relative strength 
g]hc and the range R of this interaction. 

1. Introduction 

The essential idea o f  this paper is that  there exists a basic interaction 
which, when properly formulated,  accounts for the Pauli exclusion principle 
(Pauli, 1925). This postulated interaction bears the same relationship to 
Pauli 's empirical rule as the gravitational interaction does to Kepler 's  laws 
o f  motion.  This is not  a new idea. The need for  a fundamental  theory o f  the 
interaction o f  two equivalent particles o f  half  integral spin is mentioned by 
C o n d o n  & Shortley (1951) in their well-known book.  This possibility is 
explored philosophically by Margenau (1950) and has been discussed 
briefly at meetings o f  the American Physical Society (Barker, 1969; Barker  
& Sears, 1970). 

In  any treatment o f  a possible new interaction, it is instructive to examine 
the general features which characterize the four  recognized basic inter- 
actions. We find that  strong, electromagnetic, weak and gravitational 
forces are describedt in terms o f  relative strength, range and 'charge', 

t See for example, Chew, G. et aL (1964). 
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particles directly affected and conservation laws and symmetry principles 
obeyed. There is a very interesting correlationt between the strength of an 
interaction, the number of particles directly involved and the number of 
conservation laws violated. This connection provides a clue in the descrip- 
tion of the exclusive interaction. 

The strong interaction affects the smallest number of particles and 
obeys the largest number of conservation laws and symmetry principles. As 
the strength of the interactions diminish more particles participate, but at 
the expense of violating more conservation laws and with longer character- 
istic reaction times. 

The Pauli exclusion principle applies only to particles whose spin is 
hi2, 3h/2, etc. Among the metastable particles (Rosenfeld et al., 1965), this 
includes, if we count particles and antiparticles, the four neutrinos, the 
electron and positron, the positive and negative muon, the proton and anti- 
proton, the neutron and anti-neutron, the two lambdas, the six sigmas, the 
four Xis and the two omegas, a total of twenty-six. The strong interaction 
directly involves the eighteen baryons mentioned and nine different mesons, 
for a total of twenty-seven. If we include in this comparison the large 
number of particles which decay very rapidly by the strong interaction, we 
find that the total number of known fermions is considerably smaller than 
the total number of strongly interacting particles. It is for this reason that 
the name exclusive interaction has been chosen. Further, this comparison 
suggests that the exclusive interaction will probably have a strength com- 
parable to the strong or at least the electromagnetic interaction and will 
probably obey a relatively large number of conservation laws and symmetry 
principles. 

2. Scattering in the Born Approximations 

In order to get a specific idea regarding the quantitative form of the 
exclusive interaction, we consider the scattering of two fermions in the 
Born approximation. The conventional quantum mechanical treatment of 
this problem requires that the wave function which describes the two 
particles be antisymmetrized to be consistent with the Pauli principle. Is it 
possible to add an interaction potential energy to the wave equation which 
leads to the same scattering amplitude without antisymmetrizing the wave 
function ? 

2.1. Fermion-Fermion Scattering. Outline of  Conventional Treatment Using 
Antisymmetrization of  the Wave Function 

The scattering amplitude f(0) in the center of a mass coordinate system 
can be found from the asymptotic form of the solution of the wave equation. 

~2 e 2 
--2---~ V2 u + ~- u = Eu (2.1.1) 

t This unexplained correlation is discussed for example, by Ford, Kenneth (1968). 
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Here, r is the radial distance between two particles of  the same mass m and 
charge e. The reduced mass for the system # = m/2. The wave function 

u > e x p ( i k z )  + r - l f (O)exp( ikr )  (2.1.2) 
r -~o  

where the propagation vector k has the magnitude k = pv/h and is directed 
along the polar axis. The relative speed of  the two particles is v. In the Born 
approximation 

eo 

0 

where hK=2khsin(O/2) is the magnitude of  the momentum transferred 
from a particle of  mass # to the scattering potential during the collision. 
We consider two cases: scattering by a screened Coulomb potential 

e 2 
V(r) = r exp (-r/a) (2.1.4) 

and by a potential barrier 

V(r) = Vo (0 < r <. a) 

V(r) = 0 (r > a) (2.1.5) 

Explicit evaluation of  equation (2.1.3) yields 

2#e 2 
f(O) = hZ(K 2 + a_2) (2.1.4a) 

and 

2#Vo - 
f(O) = -- h2 Ka (sin Ka - Ka cos Ka) (2.1.5a) 

These results are valid in the approximation ka >> 1.t 
The scattering amplitude expression, for Ka >> 1, reduces to 

2/re 2 
f(O) = h2K2 (2.1.4b) 

and 

f(O) = 2#1Io a 
h 2 K2 (2.1.5b) 

The results for the two cases are seen to be the same if the range a is chosen 
the same and Vo = e2/a. In the case of non-identical particles of  charge lel, 
this leads to the classical Rutherford result for the differential scattering 
cross section. 

or(0) - If(0) l 2 = ~ cosec" (2.1.6) 

t See, for example, Schiff, L. I. (1955). 
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However, for identical particles of spin-�89 the Pauli principle (Schiff, 1955, 
p. 228) requires that the spatial part of the asymptotic wave function be 
symmetric (antisymmetric) if the spin part is antisymmetric (symmetric). 

u ~ exp(ikz)• + [f(0) +f(zc -  O)]r-lexp(ikr) (2.1.7) 
r-~co 

This equation fulfills the formal requirement that the total wave function be 
antisymmetric under an exchange of the two particles. The plus sign is used 
in equation (2.1.7) when the particles have antiparallel spins and are 
described by an antisymmetric singlet spin wave function. The minus sign 
is used, on the other hand, when the particles have parallel spins and are 
described by a symmetric triplet spin wave function. We note that for 
Coulomb scattering 

2#e 2 #e 2 
f (~  -- 8) hZ(K,2 + a_2) ~ 2h2k2cos2(O/2) (2.1.8a) 

and for square barrier scattering 

2~Vo. 
f(~z - 8) ~-K-~(smK' a - K" acosK' a) ,~ 

where K' = 2kcos (8/2). 

I~Voa 
2h 2 k 2 cos 2 (0/2) 

(2.1.8b) 

2.2. Fermion-Fermion Scattering. Outline of New Treatment in which an 
Interaction Potential Energy is Used Instead of Antisymmetrizing the 
Wave Function 

We now inquire as to the form of an interaction potential energy which 
could be added to equation (2.1.1) which would lead to both the positive 
and negative values of the scattering amplitudes expressed in equations 
(2.1.8). We see, from equation (2.1.3) that this is equivalent to finding a 
V(r, a) such that 

KVoa 
f rV(r,17)sin(Kr)dr=• or •  (2.2.1) 

o 

The algebraic signs in equation (2.2.1) may be obtained by letting the spatial 
part of the potential energy be multiplied by the spin exchange operator.t 

V(r, 17) = [1 
+ 171 ] 2 "172J V(r) (2.2.2) 

Hence for parallel spins V= +V(r) and for antiparallel spins V= -V(r).  
The spatial part of the potential energy may be found by using the theory of 
Fourier transforms (Morse & Feshback, 1953). Let 

t See for example, Bohm, David (1951). 
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(2fiz; (2) '/z Kez F(K) = sin (Kr) rV(r) dr = K2 _ 4k z 

Then 

o r  
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eo 

[2\ i/z t" 
rV(r)=t-~) J sin(Kr)F(K)dK (2.2.4) 

o 

The integral over K may be performed by making the change of variables 
x = Kr and letting a = kr, and noting that the Cauchy principal value 
(Arfken, 1970) of the improper integral 

o r  

c~ 

r x s inx  
J x ~ - a  zdx=rcc~ 
o 

The final expression for V(r, a) is then 

V,r ,  oO, 

That equations (2.2.6) give the desired results may be confirmed by sub- 
stituting V(r, a) directly into equation (2.1.3) and using the definite integral 

b ( d 2  %- b z _ c 2) 
lim exp (-dr) sin br cos crdr = lim (2.2.7) 
a-~o 0 n-~o [d 2 + (b - c) z] [d z + (b + e) 2] 

(2.2.5) 

(2.2.6a) 

with b = K and c = 2k. 
The tentative mathematical form for the exclusive interactions, adaptable 

to fermions with or without electrical charge, is suggested by equations 
(2.2.6). Hence it is proposed that 

V(r, cr) =gcos(cr)exp(-r/R)[ 1- + ~,.-d2_] 2 j (2,2.8) 

be used to investigate the binding energy of helium and helium-like atoms. 
This study should lead to estimates for the relative strength g[hc and range 
R of the exclusive interaction. The quantity c which appears in the argument 
of the cosine function will be treated as a parameter to be determined in each 
case by a variational approach similar to the methods first used by 
Hylleraas (1930). 

(2 f /2  KVoa 
KZ _ 4k 2 (2.2.3) 
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